Introduction to Geoprocessing in ArcGIS 9

ND GIS Users Conference – Bismarck, ND October 24, 2006

Travis Saladino ESRI-Minneapolis

Workshop objectives

- **♦ Introduce Geoprocessing in ArcGIS:**
 - ◆ Tools (dialogs)
 - ◆ ModelBuilder
 - Scripting
 - **◆ Command Line**
 - ◆ Advanced topics
- ◆ Ask questions and participate in discussions

What is geoprocessing?

- Geoprocessing is the processing of geographic information, one of the basic functions of a GIS
- ◆ Perform a variety of geographic based tasks CAD GDB

Geoprocessing answers spatial questions

How many people are within a contamination zone?

#People:

#People:

#People:

#Реор

Geoprocessing at ArcGIS 9

Geoprocessing framework available with ArcGIS 9

ArcToolbox

Accessing the ArcToolbox window

- A dockable window with toolboxes
 - ◆ Obtained in ArcMap, ArcCatalog, ArcGlobe, or ArcScene
 - ◆ Tree view in ArcCatalog
 - No longer a separate application

Toolsets and tools

- Toolbox: Container for tools and toolsets
- ◆ Toolset: Logical container of tools and other toolsets
- ◆ Tool: Single geoprocessing operation
 - ◆ System tool, model, script, custom built tool
 - All tools look and act the same

Executing tools

- Double-click any tool to activate the tool dialog
- Specify parameters
- Click OK to run
- Messages appear in progress dialogs and Command Line window

Command Line

Tool Dialog

Tools and licensing

- Ability to use ArcToolbox, command line, models, scripts is included at all license levels
- The amount of tools vary depending on license level and extensions you have available
- License Levels
 - ◆ ArcView = 102 tools
 - ◆ ArcEditor = 104 tools
 - ◆ ArcInfo = 251 tools
 - ♦ 9.2 has 81 new core tools
- Extensions
 - ◆ Spatial Analyst extension = 158 tools
 - ◆ 3D Analyst extension = 45 tools
 - Network Analyst extension = 16 tools
 - ◆ Geostatistical Analyst = 1 tool
 - ◆ 9.2 Adds 40 new tools to extensions
 - ** At 9.2 a total of 582 tools with ArcInfo and all extensions

Toolbox tabs

- ◆ Favorites
 - Most frequently used tools
- ◆ Index
 - Alphabetical listing of all tools
- ◆ Search
 - Search tools by name or keyword
- ◆ Results New at 9.2
 - Historic view of GP results

Creating your own Toolbox

- Create new toolboxes in ArcToolbox or ArcCatalog
 - Used to store models, scripts, custom tools, or a shortcut to frequently used tools
- Where can Custom Toolboxes be saved?
 - 1) My Toolboxes
 - Created in ArcToolbox or Catalog Tree
 - Stored as .tbx in your user profile directory
 - 2) Folder
 - Created in Catalog Tree
 - Stored as .tbx in folder
 - 3) In a Geodatabase
 - Created in Catalog Tree
 - Stored as table in GDB

Adding a toolbox to ArcToolbox

- ♦ In ArcToolbox
 - Browse for toolboxes
 - Add Toolbox dialog
 - ◆ Navigate to toolbox and Add

- In ArcCatalog
 - Add any toolbox by right-clicking
 - ◆ Copy and paste into ArcToolbox

Creating your own tools

- ◆ Three ways to create a tool
 - ◆ ModelBuilder
 - **♦** Scripts
 - ◆ Custom-built tool with ArcObjects
- All tools act and behave the same
 - ◆ Execute as a dialog
 - ◆ Accessing documentation

ArcGIS ModelBuilder

What is ModelBuilder?

- ModelBuilder is a window tool with a graphic environment where geoprocessing models can be built
- ModelBuilder is included with all ArcGIS Desktop license levels
 - ◆ (ArcView, ArcEditor, ArcInfo)
- The ModelBuilder window consists of:
 - A display window in which you build a diagram of your model
 - A main menu and a toolbar that you can use to interact with elements in your model diagram
 - You can run the model from within the ModelBuilder window or from its dialog box.

ModelBuilder

Types of Models

- ♦ Repetitive Tasks → Execute a series of frequently used tools
- ♦ Suitability Models → Use to find a best location
- ◆ Process Models → Show the landscape as conditions change

Why use ModelBuilder?

- ♦ Faster Analysis
- Ability to create complex models
- Ability re-execute the same model and change parameters
- Graphic documentation of work (metadata)

Example Model

 Find the optimal driving route for a table of workorders exported out of workorder management system

Model elements

- Project data: Data that exists before model is run
 - ◆ Blue oval
- ◆ Tool: Operation performed on input data
 - ♦ Yellow-orange rectangle
- Derived Data: Output data created by a function
 - ◆ Green oval
- Process: Set of elements
 - Run one process at a time or all at once

Tools within a model

- ◆ Right-click or double-click to obtain parameters
 - ◆ Same dialog as tools from a toolbox

Parameters

- ◆ Input/Output data and values for a tool
- Used for running model as dialog
- Right-click model element and choose to create parameter

Three states of model elements

- ♦ Not ready to run: Parameters not defined
- Ready to run: All elements colored
- ◆ Already run: All elements colored and shadowed

Validating a model

- Validating a model
 - ◆ Returns model elements to ready-to-run or not ready-to-run states
 - ◆ Validate to determine if model is valid an ready-to-run

- What causes a model to be invalid?
 - ◆ Parameter values no longer valid (referencing non-existent data)
 - ◆ Tools referenced no longer exist
 - ◆ COM tool inside the model is unregistered

How to execute models

- Models can be executed in 2 ways
 - 1) Directly from the ModelBuilder Window
 - Run entire model Or
 - Can optionally execute one process at a time
 - 2) Execute from Toolbox as a tool dialog

ModelBuilder

Tool Dialog

Running models with parameters

- ◆ Parameters include Input/Output data values and variables for a tool
- ◆ Right-click model element and choose to create parameter
- Parameters are used to run models as a dialog
 - ◆ All parameters created in a model appear as a tool dialog

Intermediate Data

- You determine which derived data elements are intermediate
 - ◆ Right-click model element and choose 'Intermediate'
- Intermediate Data is deleted after model executes
 - ♦ Saves disk space

Geoprocessing options

- ArcMap & ArcCatalog
 - ◆ Tools → Options → Geoprocessing Tab
- Options:
 - Overwrite outputs of geoprocessing
 - ◆ Log geoprocessing to a history model
 - Specify your default toolbox location
 - Display valid parameters when connecting ModelBuilder elements
 - Add geoprocessing outputs to ArcMap display
 - ◆ Make geoprocessing results temporary

Printing & Exporting models

- ◆ Export to a graphic
 - ◆ Export as .bmp, .jpg, .emf
 - ◆ Useful for placing in map layouts
- Printing models
 - Add borders, captions, page numbers

Tool documentation

Documentation Editor

- ◆ Ability to edit documentation for tools and toolboxes
- ◆ Ability to create help menu
 - ◆ Documentation built into ArcGIS online help system
- ◆ Ability to create metadata
 - ◆ Useful for Metadata server

Abstract

Sample Data Migration Model that illustrates the migration of source parcel data into

ArcToolbox Documentation Editor

General Information

■ Abstract

☑ Keywords☑ Author☑ Constraints

Model Report

- XML document available for viewing or creation
- Useful for historical view of processes executed
- Contains information on:
 - ◆ Variables
 - ◆ Processes
 - ◆ Messages
 - ◆ Time and date of execution

Saving and sharing models

- Models can be saved to a stand-alone Toolbox (.tbx) or to a toolbox within a Geodatabase (.mdb)
 - ◆ Exchange the .tbx or .mdb file
- Option to export the model as a script and share the script
 - ◆ Python, VBScript, or Jscript

** Note: Set model parameters if the tool will be used with different data

Demonstration: ArcToolbox & ModelBuilder

Scripting and the Geoprocessor

Why write scripts for geoprocessing?

- Similar advantages that models have
 - ◆ Efficiently execute series of different tasks
 - ◆ Easy to read and document
 - ◆ Easy to share
- Perform batch operations
- Use logic to control tool execution
 - Branching and Looping
 - ◆ Delayed Processing
- Interface with other systems
 - ◆ Can be run outside of ArcGIS
- Self contained (single file)
- Run any time
- Familiar environment for AML and Avenue users
 - ♦ Users don't have to learn a proprietary language

```
GetDistance.vbs - Notepad
   Edit Format View Help
 Created on: Thu Jan 06 2005
  Created by: Chris Liske
 Create the Geoprocessor object
set gp = WScript.CreateObject("esriGeoprocessing.GPDispatch.1")
 Load required toolboxes...
qp.AddToolbox("C:/Program Files/ArcGIS/ArcToolbox/Toolboxes/Data Mana
Set Workspace
gp.workspace = "C:\temp\NAPIL_temp.mdb"
set cur = gp.SearchCursor("C:\temp\NAPIL_temp.mdb\Building_Pt")
set row = cur.Next()
Function hyddist
       hyddist = Round(row.NEAR_DIST, 2)
End Function
MsaBox "
                        " & hyddist & " Feet", vboKonly, "Nearest Hy
```

Where to write scripts?

 Choice of scripting languages: Any language with a COM interpreter

VBScript

Based on VB: Simpler

Popular Web language

JScript

Syntax similar to C/Java

Works in many Web browsers

Python

Flexible, powerful

Easy to learn

Perl and other scripting languages

GpDispatch

- ◆ An ArcObject accessible in all COM languages/scripts
- Also referred to as the Geoprocessor
- Exposes all geoprocessing functionality
 - ◆ Object is late-bound (no code completion)

Writing scripts

- ◆ Import Geoprocessor object
 - ◆ Uses native Python support, scripts not dependant on Windows OS at 9.2 import arcgisscripting
- ◆ Instantiate the Geoprocessor object

```
gp = arcgisscripting.create()
```

◆ Set properties (e.g., where processing will occur?)

```
gp.workspace = "c:\\Florida.mdb"
```

◆ Comment code

```
# Buffer roads by 100 meters
```

Run tools

```
gp.Buffer_analysis("roads", "rdbuf100", "100")
```


Constructing Python statements

- Use the Geoprocessor with object-oriented programming
- Call tools with:

Geoprocessor.ToolName (parameter1, .., parameterN)

```
gp.CreateFolder("c:\\Florida", "Scripts")
gp.Clean("Europe", "#", "#", "#", "POLY")
```

Referencing data in Python

- ◆ Use \\ or / for path names
 - ◆ Python is based upon the C programming language
- ◆ Defined by double (") or single (') quotes

```
gp.workspace = "c:\\Florida"
gp.CreateFolder('c:\\Florida', 'Scripts')
```

Concatenate strings

```
outputfc = gp.workspace + "\\" + inputfc
```

Referencing tools and toolboxes

- Only system toolboxes available by default from Geoprocessor
 - ◆ Analysis, coverage, data management, etc.
 - ◆ Use toolbox alias if tools have the same name

```
gp.Buffer_analysis(roads, Out_Buff, "10 Meters", "FULL")
```

◆ Add your own toolbox

```
gp.AddToolbox("c:\\MyProject\\CrossCountryMobility.tbx")
gp.BestPath("start.shp", "destination.shp", "results.shp")
```

Exporting a model to a script

◆ Easy way to start writing scripts

Example script

```
Import system modules
import sys, string, os, arcgisscripting
# Create the Geoprocessor object
qp = arcgisscripting.create()
roads = "C:/Data/Florida/ROADS.shp"
Out Buff = "C:/Data/Florida.mdb/ROADS Buffer"
citylimit = "C:/Data/Florida/citylimit.shp"
Out_Clip = "C:/Data/Florida.mdb/BUFF Clip"
# Process: Buffer...
gp.Buffer analysis(roads, Out Buff, "10", "FULL", "ROUND")
# Process: Clip...
gp.Clip_analysis(Out_Buff, citylimit, Out Clip)
```

Running scripts in different environments

- Check syntax and run in PythonWin
 - ArcGIS applications can be closed

- Run at DOS prompt
 - Python C:\PythonScripts\RoadBuffer.py
- Create a tool
 - ◆ Add a script to a toolbox
 - ◆ Open command runs script tool
 - Edit command opens script source in text editor

Distributing scripts

- ◆ As Python source file .py
- ◆ As script tools in toolboxes
 - ◆ User creates script tool for parameters
 - ♦ Share the .py file and toolbox

Using the Command Line Window

Command Line window

- Available in all ArcGIS applications
- Similar interface to ArcInfo Workstation but with more intelligence
 - Auto Completion, Help, and intuitive messaging
 - Ability to save environment settings and create variables
 - Parameters provided in a dropdown list
 - ◆ Commands and arguments may be different

ArcInfo Workstation

ArcGIS 9x

Why use command line?

- ◆ Execute models, scripts, and tools quickly
- Shortcut to tools in ArcToolbox
- Saves time if you're familiar with geoprocessing tools
 - ◆ Allows you to obtain quick view of all tools available

Syntax notation

◆ Similar to ArcInfo Workstation

```
ToolName <Argument> {Argument} {KEYWORD | KEYWORD} 
Required Optional Optional Keywords
```

- ◆ First optional keyword will be taken as default
- ◆ Use # to skip arguments
- Allows multi-line commands
 - ♦ Shift + Enter
 - ◆ Press Enter to execute all tools in the Command Line Window

Passing in parameters

Usage appears showing all parameters

```
Buffer <in_features> <out_feature_class> <buffer_distance_or_field> {line_side} {line_end_type} {dissolve_option} {dissolve_field; dissolve_field...}

Buffer
```

- Type in name of command and press Enter
 - ◆ Usage appears in Command Line window

Dropdown list shows available layers in ArcMap TOC

Using Variables in Command line

- Make variables for parameters
 - ◆ Data and workspaces
 - **◆** Expressions
 - ◆ Spatial reference
 - ◆ Strings & Values
- Create on the fly or with the variable manager window

Variable Manager

Data Type

Strina

Feature Class

Name

Input Output Value

Defined

Defined

Messages

- Successful completion of a tool
 - ◆ Includes Start and End Time
- Commands (blue font)
- ◆ Errors (red font)
 - Indicates a tool did not execute
- Warnings (green font)
 - ◆ Indicates that a step may have been skipped; gives usage

```
Buffer

Buffer

Usage: Buffer <in_features> <out_feature_class> <buffer_distance_or_field> {FULL | LEFT | RIGHT} {ROUND | FLAT} {NONE | ALL | LIST} {dissolve_field;dissolve_field...}

Buffer Building Test 40
Executing: Buffer Building Test "40.000000 Unknown" FULL ROUND NONE # Start Time: Mon Apr 11 13:40:59 2005
Error in creating output Test
Failed to execute (Buffer).
End Time: Mon Apr 11 13:40:59 2005 (Elapsed Time: 0.00 secs)
```

Executing a model from command line

2 Rules

- Toolbox containing model must be added in ArcToolbox
- Execute model by calling model name, not the label

Editing and re-executing existing processes

- ◆ Allows re-execution of previous commands Or
- Allows to edit parameters of previous commands before re-executing
 - ♦ If source of layers changes
 - ◆ Change a parameter (buffer distance)
 - ◆ Edits are made (new features added)
 - ♦ Selection changes, etc...

** Can also use up and down arrows on keyboard for previous commands

Demonstration: Scripting & Command Line

Advanced Geoprocessing and Modeling

Batch Mode

- ♦ New at 9.2
- Run the same tool many times with different inputs, parameters, or outputs
- **♦** Available for all tools, models, or scripts
- ◆ Right click Tool > **Batch**
- No script necessary

Many inputs to Models

- Models can carry out actions beyond what is within the toolbox
 - ◆ Run a previous model as a tool
 - ◆ Run a script as a tool
 - ◆ Use an .exe or external function as part of a model

Running a model in another model

- Drag and drop model from toolbox like any other tool
- ◆ If output from a previous model is a parameter, it will be exposed in a larger model

Using a script

- ◆ Drag and drop a script from a toolbox
 - ◆ Create parameters in script to add connections between tool
- ◆ Attach an .exe or AML to a script

Precondition property

◆ Used to control flow of model execution

Used to branch within a model

Applying a precondition property

◆ Set for tools accepting parameters from a script

1. Apply Precondition to next tool

2. Select condition from script output

Looping in a model

- ♦ New at 9.2
- Applied to whole model or specific processes
- Supports higher logic
 - **♦ Lists**
 - ◆ Series
 - ◆ Boolean conditions
 - ◆ Counts
 - ◆ Feedback

Variables in models

- ♦ New at 9.2
- Place holder for numbers, strings, or other inputs to processes
- "Any value" option
- Can be set by other process or by user

Branching in a model

Precondition property from a script

Steps for branching within a model

- O Create a script that will set parameters as output-based upon if/then conditions
- 2 Add the script to a toolbox, specifying output parameters that are in the script
- Apply precondition properties to tools to determine model flow

Writing a script to branch in a model

 Specify parameters to control which tools are executed in a model

```
inputfc = gp.GetParameterAsText(0) #SAME AS sys.argv[1]
dsc = gp.describe(inputfc)
if dsc.shapetype == "polygon":
    gp.SetParameterAsText(1, "True")
    gp.SetParameterAsText(2, "False")
else:
    gp.SetParameterAsText(1, "False")
    gp.SetParameterAsText(2, "True")
```

In-line variables

- ♦ New at 9.2
- Available in ModelBuilder and Command line
- ◆ Substitutes for another variable
- ◆ Enclose variable in %
 - ♦ %ScratchWorkspace%
- ◆ More portable models
- ◆ Two system variables
 - ♦ %n% Number in loop, starts at 0
 - ♦ %i% Number in series, starts at 0

"In_memory" workspace

- **♦ New in 9.2**
- ◆ Output written to memory, not to disk
- Much faster models
- ◆ Only Intermediate data
- ◆ Should use Delete tool to manage data

Run a script at a specific time

- Windows scheduler
 - Start Menu > Settings > Control Panel > Scheduled Tasks > Add
 Scheduled Task
 - Browse to Script
 - Select Program you want Windows to run (ie. Python)

http://support.esri.com/index.cfm?fa=knowledgebase.techarticles.articleShow&d=27553

Relative paths

- Property of a model or a script
- Keeps track of all tools and data elements
 - ◆ Stores reference information to the source data

Store Relative Path Names

Resources for learning Python

Books

- ◆ Learn to Program Using Python
- ◆ Learning Python
- ◆ The Quick Python Book
- ◆ Python, Essential Reference

- ◆ The Python Foundation (<u>www.python.org</u>): Tutorials, documentation
- **♦ ESRI Instructor-led course**
 - ◆ Introduction to Geoprocessing Scripts Using Python
- Writing Geoprocessing Scripts with ArcGIS .pdf
- Online help

Learning paths

- ◆ Learning Guide
 - ◆ Learning paths organized by software and topic
- ◆ Learning options
 - **♦ Instructor-led courses**
 - **♦ Virtual Campus courses**
 - ◆ Training seminars
 - ♦ Web workshops

Software support resources

 ESRI Support Center a gateway to resources

http://support.esri.com

- ◆ Knowledge Base
 - ◆ Technical articles
 - ♦ White papers
 - **♦** System requirements
- ◆ Downloads
 - ◆ Patches and service packs
 - Data models
 - ◆ ArcScripts
- User Forums
 - **♦** Discussion groups
 - **◆ E-mail lists**

Thank you for Attending!